BIOSS
Centre for Biological Signalling Studies

Identifiability and observability analysis for experimental design in nonlinear dynamical models

Dezember 2010

Raue A, Becker V, Klingmu?ller U, Timmer J.

Chaos 20(4):045105

Chaos    online article

Dynamical models of cellular processes promise to yield new insights into the underlying biological systems.  Parameter estimation faces the challenge of nonidentifiability. Nonidentifiability of parameters induces nonobservability of trajectories, reducing the predictive power of the model. We will discuss a generic approach for nonlinear models that allows for identifiability and observability analysis. The results will be utilized to design new experiments that enhance model predictiveness.