BIOSS
Centre for Biological Signalling Studies

Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity

04.12.2014

Cai C, He HH, Gao S, Chen S, Yu Z, Gao Y, Chen S, Chen MW, Zhang J, Ahmed M, Wang Y, Metzger E, Schüle R, Liu XS, Brown M, Balk SP.

Cell Rep. 2014;9(5):1618-27.

Cell Rep           online article

Lysine-Specific Demethylase 1 (LSD1, KDM1A) functions as a transcriptional corepressor through demethylation of histone 3 lysine 4 (H3K4) but has a coactivator function on some genes through mechanisms that are unclear. We show that LSD1, interacting with CoREST, associates with and coactivates androgen receptor (AR) on a large fraction of androgen-stimulated genes. A subset of these AR/LSD1-associated enhancer sites have histone 3 threonine 6 phosphorylation (H3T6ph), and these sites are further enriched for androgen-stimulated genes. Significantly, despite its coactivator activity, LSD1 still mediates H3K4me2 demethylation at these androgen-stimulated enhancers. FOXA1 is also associated with LSD1 at AR-regulated enhancer sites, and a FOXA1 interaction with LSD1 enhances binding of both proteins at these sites. These findings show that LSD1 functions broadly as a regulator of AR function, that it maintains a transcriptional repression function at AR-regulated enhancers through H3K4 demethylation, and that it has a distinct AR-linked coactivator function mediated by demethylation of other substrates.